
Fashionable prototyping and wearable computing using the Arduino

Copyright © 2008 Tony Olsson, David Gaetano, Jonas Odhner, Samson Wiklund.
First Edition. Some Rights Reserved.
This book is licensed under the terms of Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 license available from http://www.creativecommons.org/. Accordingly, you are free to
copy, distribute, display, and perform the work under the following conditions:

 1 you must give the original author credit.
2 you may not use this work for commercial purposes.
3 you may not alter, transform, or build upon this work.

For any reuse or distribution, you must make clear to others the license terms of this work. The best
way to do this is with a link to this web page.

www.creativecommons.org

Any of the above conditions can be waived if you get permission from the copyright holder. Nothing
in this license impairs or restricts the author’s moral rights.

Open softwear
fashionable prototyping and wearable

computing using the Arduino

5

Preface

The content of this book is inspired by the teachings of the physical
prototyping laboratory in the school of art and communication, at
the University of Malmö.

The physical prototyping laboratory, run by David Cuartielles, has
some of the longest running university courses based on the Ar-
duino platform where Arduino has been a active part of the cur-
riculum in Fashion, body and technology, Light Installation and in
the Interaction programs at both bachelors and masters level, since
2005.

Until resent years students of the fashion body and technology
course have been introduced to physical prototyping in a old fash-
ion “hard“ way. Earlier focus has been on transferring technology
into the context of fashion and wearable computing.

However, in recent years, steps have been taken to implement
technology into the context of fashion in a “softer” way. Prior to
this, the experience from teachers at physical prototyping labora-
tory has been that students with an interest in fashion and wearable
computing have had a hard time transferring the standard physical
prototyping knowledge into prototype development of a wearable
character.

When searching for suitable material to base our new approach to
the field we soon realized that the available information was quiet
limited and most of the material was of a “arts and craft” character.
We a strong believer int the DIY movement and still think there
is much to learn form the “arts and craft” materials out there but I
think that a course at university level should be able to offer more
complex approach than what can be learned for “do it your self
guides”.

Form my earlier experience of both attending and teaching the
normal prototyping courses K3 Malmö my opinion is that the Ar-
duino platform used, is that it is one of the best prototyping plat-
forms currently available for two simple reasons. The price and the
community. Both reasons are connected to the philosophy of the

6

Arduino and the Arduino is quite unique since it is both open soft-
ware and hardware.

The goal with Arduino was to create a prototyping platform for
designers to be able to realize there ideas by them selfs. And the
openness in the Arduinos own design means that anyone is free
to make modification to both the hardware and software or even
produce and sell the actual boards. This in turn means that the price
of the Arduino is available at a very affordable level since anyone is
allowed to compete in the manufacturing.

The price in turn is also one of the main reasons to large number
of users and its these users that is the Arduino community. This is
a community that share a common love for prototyping and share
the Arduinos philosophy of openness which not only means that
there is a lot of information and help to be found. It also means
that Arduino community also is one of the most current and rapid
in pushing the evolution of prototyping forward. With this in mid
the question has never been to move away from the Arduino when
approaching the field of fashion and technology but rather how can
we approach the field in a “softer way” using the Arduino.

Most of the development in the course has focused on comparing
projects from active people in the field of fashion and wearable
computing to the teachings at the University to find softer alterna-
tives to the normal “hard“ components. The goal has been to use
the same basic principles used in “hard technology” and imple-
menting them in a “soft” way to help the understanding of technol-
ogy in terms that could be considered more naturally for people
approaching physical prototyping from a textile background.

With the use of the Arduino I also hope to add what I consider one
missing key feature that is missing in the “art and craft” moments
approach to fashion and technology and that is the possibility of
computing information.

This book isn’t solely aimed at people with an academic interest in
the field of fashion and technology and wearable computing but
should also be considered as a start up guide for any one with a
general interest in the subject.

7

It has been my aim to follow the teaching philosophy of David
Cuartielles and the physical prototyping team at K3 Malmö. It is a
simple philosophy that can best be compared to punk rock. Punk
rock took the approach that you don’t have to know everything
about music to play music. If you know three basic accords that
is enough to make a song. The same goes for prototyping. Once
you know a couple of basic programming commands and how to
connect something simple like a LED, then you can start building.
Knowledge about prototyping comes from doing, not reading. But
still you need some basic accords to play and I hope that the follow-
ing chapters will get you started.

Tony

Contents

Part one: Basics
Chapter 1: Introduction 13
Chapter 2: Hardware 17
Chapter 3: Software 25
Chapter 4: Using the IDE 29

Part two: Examples
Chapter 5: Using digital Pins 37
Chapter 6: Using analog pins 51
Chapter 7: Moving stuff 59
Chapter 8: Complex examples 63

Part three: Coding
Chapter 9: Writing Programs 75

Epilogue 99
Index 103

Part one: Basics
Introduction to wearable computing.

13

Chapter 1: Introduction

Prototyping with the Arduino
The Arduino prototyping platform is based on a simple work prog-
ress of using inputs and outputs. The inputs are usually some form
of button, switch or sensor. Buttons are usually only on and off but
with sensor you can measure your environment in a variety of ways.
Sound, movement, temperature and light can all be processed by the
Arduino and if you can think of any other behaviors that you want
to measure, chances are that there already exists a sensor for it.

In the same way that you can connect a large amount of inputs,
you can control a large scale of outputs. An output can be anything
from light, movement, heat to more complex outputs like sending
an SMS or even turning a TV off on the other side of the world. In
most cases there already exists a technical solution for your proto-
type, you just have to find them.

Since the Arduino at heart is a micro controller, everything you
connect to it has to be electrical. The good thing is that nearly ev-
erything can be translated into a electrical signal. For example, when
a human is touched by something a signal is sent to the brain that
there is a sensation somewhere on the body. In the same way we can
make an electric line from the Arduino and back to it. If something
breaks this line of electricity a signal is sent back to the brain of the
Arduino to tell it that there is no electricity in the line.

Hacking: save money, learn more
Once you have started to play around with making your own elec-
tric prototypes you will soon realize that a lot of electronic com-
ponents costs a fare amount of money. It’s therefore most people
interested in electric prototyping have their other foot in hardware
hacking.

Hardware hacking is also known as tinkering and it describes the
activity of breaking commercial electrical products apart just to see
“what makes them tick”.

Tinkering isn’t just a good way to learn more about how electric

14

things work but it’s also an efficient way to save money. A lot of
components you may need for your projects can be found in what’s
normally considered junk. An old printer has a motor that might
still be functional, an old phone has nice batteries and small vibra-
tors and cheap electric toys are often goldmines.

There’s no right or wrong way of hacking and tinkering which
also means theres no official instructions on how to do it. But the
internet is full of information and tips on tinkering and the Ardu-
ino www.arduino.cc/playground, www.makezine.com and www.
instructables.com are great resources to get you started.

How electricity works
There are a few things you need to know about electricity to make
your own electronic prototypes. First of all electricity always need
to go back to where it came from to make a circuit.

In the following example we have connected a LED to a battery
with a switch:

The power from the battery will travel through the cable into the
LED in one leg and out the other down to the button and back to
the battery.

LED

Pushbutton

3.5 volt Battery

15

Buttons normally connect a small piece of metal with another one
when you push it. If the button isn’t pushed nothing will happen
but when you push it you make a connection with the metal plates
and the power from the battery can travel back to where it came
from. Once it comes back to the battery the LED lights up. In the
above example there is a 3.3V battery and a LED that can handle
3.3V of electricity. If we connected a 9V battery instead the LED
would burn. This is because electricity have different types of volt
and ampere and it travels with different resistance.

Imagine electricity like water. The speed of the water would be the
same as the volt and the amount of water traveling would be the
same as the amperes. Lets say we let our water through a garden
hose then the garden hose would be the same as the resistance for
electricity. So to connect the LED to 9V battery would be like
pushing to much water to fast through a garden hose. If the garden
hose cant let all the water through the hose will burst.
It’s very rare that that things explode when making prototypes with
the Arduino since most prototypes are made with such low voltage
it’s hard to even consider them harmful. But still it’s never a good
idea to connect more power to something than it can handle since
there’s a good chance you’ll brake it. So always follow the recom-
mended power restrictions for you components.

17

Chapter 2: Hardware

Arduino
The Arduino is an open source micro controller board used for
electronic prototyping. The Arduino can receive data from sensors
used to collect information in its soundings and it can be used to
control other electronic components as lights, motors and more.
There are varieties of Arduinos available and the most common
one is the latest version of the standard Arduino board which looks
like this:

The USB connector (1) is used for connecting your Arduino board
to your computer. While connected the Arduino board will be
powered from the USB cable and while connected you can upload
code and you can communicate from and to your Arduino board.

The power connector (2) is used when you don’t want to power
your Arduino with the USB cable. Instead you can use a normal
transformer (power adapter) in the range from 6V to 24V.

1

6
2

7

4

3

5

The most important parts on the
Arduino board high lighted in red:

1: USB connector
2: Power connector
3: Automatic power switch
4: Digital pins
5: Analog pins
6: Power pins
7: Reset switch

Note:
Although the Arduino has an on board
power regulator, make shure to never
connect a power source that is larger
than 24V. Chances are that you will
destroy your Arduino board.

18

The Arduino can also run on batteries. On Arduinos earlier than the
Duemilanove version you need to manually switch power source
on the Arduino. This is done by switching the plastic jumper (3)
located between the USB connector and the power connector. If
you want to power the Arduino with the USB you put the jumper
over the two pins closest to the USB connector and if you want an
external power source you put the jumper over the two pins closest
to the power connector. On versions later than the Duemilanove
the Arduino automatically choses the power source.

There are 13 digital pins (4) on the Arduino board and these can be
used as both inputs and outputs depending on how you set theme
in your program:

The analog pins (5) work only as input (this is not completely true
since you can reprogram these pins to digital ones but this requires
some Arduino knowledge) but can handle a larger range of incom-
ing information then what the digital pins can:

To the left of the analog pins you will find the power pins (6). From
here you can pull either 3.3V or 5V. The pin named vin will give
you whatever is connected to the power jack. If you have 12V con-
nected to the power jack, you will be able to pull the same from this
pin. Here you also can find two GND pins.

The reset switch (7) is used to reset any program on the Arduino
to start from its beginning. On Arduinos older than the Diecimila
version of the Arduino, the reset button needs to be pushed every
time you try to upload code.

For the examples in this book we have chosen to use the standard
Arduino board since it is our opinion that this is the best board
for prototyping. When you are close to finalizing you prototypes it
can be useful to migrate to one of the other smaller boards to save
space. These board work the same way and any program written for
a standard Arduino board will work on all other types of Arduinos.
The following are two other examples of Arduino boards available.

Note:
GND is short for ground.

19

LilyPad
The LilyPad Arduino is a micro controller board designed for wear-
ables and e-textiles. It can be sewn to fabric and similarly mounted
power supplies, sensors and actuators with conductive thread. The
board is based on the ATmega168V chip (the low-power version of
the ATmega168) The LilyPad Arduino was designed and developed
by Leah Buechley and SparkFun Electronics.

Arduino mini
The Arduino Mini is a small micro controller board based on the
ATmega168, intended for use on breadboards and when space is
at a premium. It has 14 digital input/output pins (of which 6 can
be used as PWM outputs), 8 analog inputs, and a 16 MHz crystal
oscillator. It can be programmed with the mini USB adapter or
other USB or RS232 to TTL serial adapter (www.arduino.cc). If
you remove the male pins from this board it can be sewn to a piece
of fabric using conductive thread.

a5
a4

a3

a2

a1

a0

13

12

11
1098

7

6

+

-

4

3

2
1/tx 0/rx

5

B G

Note:
ATmega 168 is an electronic integrat-
ed circuit microcontroller produced
by the Atmel corporation. It has the
basic Atmel AVR instruction set. For
more information about Atmel and
the ATmega chip family visit the Atmel
site:
www.atmel.com

Note:
To learn more about the hardware
of the standard Arduino board or for
information on other Arduino boards
visit the Arduino site:
www.arduino.cc. ard.

20

Basic electronic components for soft prototyping

• Conductive thread
This type of thread looks like normal grey thread but it has the
possibility to carry currents for power and signals. The conductive
thread can be used instead of normal cables to power your elec-
tronics and it is very suitable for working with “soft” prototyping.
Conductive threads come in different thicknesses and with different
resistances. The resistance in the thread lowers the pressure of the
voltage in the power supply you are using. The resistance of the
thread is normally calculated per meter so remember the simple
principle that more thread equals more resistance.

• Resistors

A resistor is an electronic component designed to oppose an electric
current by producing a voltage drop between its terminals in pro-
portion to the current. Resistance is always measured in ohm and
can also be presented as the symbol Ω. The most common multi-
pliers for resistance calculations is:

kilo ohm which is the same as a 1’000 Ω

megohm which is the same as 1’000’000 Ω

All resistors are color coded. Resistors can have 4, 5 or 6 colder
bands and it is these bands that tell you the resistance of the resistor.
The first three bands are digits that follow this color digit scheme:

black 0
brown 1
red 2
orange 3
yellow 4
green 5
blue 6
purple 7
gray 8
white 9

21

If the three bands are brown, red and blue this would translated to
126. The forth band is the multiplier. You multiple the first three
digit by this band and then you get the resistance of your resistor.
The fourth band follows the below color scheme:

silver 0.01
gold 0.1
black 1
brown 10
red 100
orange 1k
yellow 10k
green 100k
blue 1M
purple 10M

The fifth band is the tolerance of the resistor and the sixth band is
used for temperature coefficient. It’s hard to learn resistor calcula-
tions by heart so it recommended to use a online resistor calculator
to be certain. If you google “resistor calculator” you will find a lot
of them.

• LED

A light emitting diode (LED) is a semi conducting diode that lights
up when electric current is applied in the forward direction of the
LED. There are three different ways of telling the forward direction
of a LED. The first is to look at the legs of the LED. There will be
one that is longer. This long leg will be the one connected to where
the power comes from and the short leg needs to be connected to
the ground of the power source(1). The second way to tell what
way of a LED is to look at the shape of the plastic bubble(2). The
lower rim of the bubble should have one side that is flat and it is
the leg of that side that should go to you power and the other side
should go to ground. The third way is to hold a LED up to a light
and have a look inside. There will be two pegs, one small and one
big(3). The leg that goes to the small peg is the one that should be
connected to the ground and the leg on the big peg should be con-
nected to power.

Note:
The third digit is not used on four
band resistors. Four band resistor
only use two digits, the third band is
the multiplier and the fourth is the
tolerance.

1

3

2

22

The most common LEDs are powered in the vicinity of 3.3V and
20mA. Note that the Arduino will always supply 5V from the digital
pins. This is why we will use a resistor of 220 Ω to lower the power
so we won’t burn the LED. To be sure what power your LED needs,
have a look at the data sheet for your LED. This information is often
available with the electric components you buy. If you need to cal-
culate what resistance to use for your LED I recommend you use
an online resistor calculator.

• Conductive fabric
Conductive fabrics are normally a combination of highly conduc-
tive metals and lightweight fabrics and is often used as a shielding
material. Conductive fabrics have the ability to conduct electricity.

• Tilt sensor
A tilt sensor is a sensor that can detect if a object is tilting to one
side or another. The cheapest kind of tilt sensor can also be used
as a measurement for movement. The drawback of this kind of tilt
sensor is that they work as a pushbutton so they cant be used to
tell which direction an object is tilting or how much, only that the
object is tilting.

Inside the tilt sensor there is a small metal ball inside a metal casing.
Once the ball touches the sides of the metal casing it will complete
a circuit and we can read it from the Arduino board.

• LDR sensor
LDR stands for Light Dependent Resistor and is also known as a
photoresistor. An LDR is made of a high resistance semiconduc-
tor. The LDR is similar to a normal resistor with the exception
that normal resistor have fixed values and the LDR:s resistance is
dependent on light in its vicinity. It is very hard to use an LDR to
determine an exact amount of light in a given setting but they are
good enough to use for determining light in a broader sense - if its
dark or light.

23

• NTC sensor
NTC stands for Negative Temperature Coefficient and is also know
as a thermistor. A thermistor is a type of resistor that changes its re-
sistance according to temperature. It’s hard to use a thermistor to tell
exact temperature but they’re still good enough to make estimates if
something is cold or hot.

• Motors
If you want to move something you probably need a motor of some
sort. A motor is more or less an actuator that turns electricity into
movement. While working with hidden wearable prototypes mo-
tors can become and issue if you need a lot of force. Most motors
follow the simple principle “the bigger the force, the bigger the
motor”. There are still lots of small motor that could be relevant
and with some creativity motors can be nicely integrated in your
prototypes.

There are three main types of motors: DC motors, Servo motors
and stepper motors.

We have not included any examples of stepper motors in this book.
Though stepper motors are good for moving in full rotation and
in steps, they’re not appropriate to implement into wearable tech-
nology since they are both heavy for there size and quite bulky in
their shape. If you are considering using motors it’s recommended
that you find either a DC motor or a Servo motor that fits your
prototype.

• Wires
Wires are thin conductive metal threads placed inside a plastic casing, they
come in a wide range of sizes and colors. It’s good prototyping behaviour
to color code your wires so you consistenly use the same colors.. The com-
mon color use is GND = black, PWR = red and then the pins can have

any other color.

Note:
When we’re using wires it’s good
prototyping behaviour to curl the
exposed metal core to make it easier
to sew in place.

25

Chapter 3: Software

The software used to write programs for your Arduino is called the
Arduino IDE (Integrated Development Environment). The Ardui-
no IDE is based on another open source programing language and
program called Processing used for programing images, animations
and computer interactions. The Arduino IDE looks very similar to
the Processing IDE:

The above is the Processing IDE and below you can see the Ar-
duino IDE:

26

Even the Arduino coding language is molded after the Pro-
cessing language. The Arduino language is based on easy to use
commands and every time you press the upload button in the
Arduino IDE it will translate you program in to C code so the
Arduino board can understand your program. The language
is built this way since C programming is quite hard to use for
first time programmers.

Installing the software

The software can be found on the www.arduino.cc site un-
der “downloads”. Once you have found the download page
choose the right version for your operating system. When you
have downloaded the software, uncompress it and put the Ar-
duino folder on your desktop.

• For XP users
After you have done all the steps in previous section, take your
Arduino board and connect to your computer with the USB
cable. Now Windows will tell you that it found a new USB
device and it needs the drivers. Redirects the program to the
drivers folder inside your Arduino folder and install the driv-
ers:

desktop/Arduino/drivers/

After you have done this one time Windows will ask you the
yet another time for new drivers. Redirect the program once
again to the same folder and install one more time.

• For Vista users
Go to www.ftdichip.com and in the “drivers” section locate
the D2XX driver and download it, double click on it and in-
stall the drivers. Then connect your Arduino to the computer
with a USB cable. Vista will tell you that it found a new device
and that it needs the driver for it. Redirect it to the drivers
folder inside the Arduino folder:

desktop/Arduino/drivers/

27

After you have done this one time Windows will ask you the yet
another time for new drivers. Redirect the program once again to
the same driver and install one more time.

• For OSX users
Open the Arduino folder and then the drivers folder. Choose the
right driver for your processor and double click on it. This will
install the drivers needed and it will force you to restart your com-
puter.

29

The IDE buttons:

Note:
The IDE only makes a logical check
and can’t determine if the program
corresponds to what you want the
program to do.

Once you started to compile you
can’t stop the compilation with the
stop button.

Chapter 4: Using the IDE

The IDE consists of two large spaces, one white and one black.
The white space is where you will write your program. Note that
anything you write in here will be considered as code if you don’t
“comment it”. To learn more on how to hide text in your code
turn to page ?.

The black space is where you will receive error and confirmation
messages. Above the white space you will find the IDE buttons.
With these buttons you control most of the actions in the IDE.

The first one is the compile button. This button makes a check of
your program to see if there’s any logical errors in your code.

The second button is the stop button. This button is used to turn
off the serial monitor. The compiler will take as much time as it
need but don’t worry, compiling usually only takes a few seconds
depending one how big your program is.

The third button is the new sketch button. In the Arduino IDE all
programs you open or write are called sketches. The new sketch
button will open a new sketch for you, but will first ask if you want
to save your present sketch.

New Sketch

Open Sketch

Save Sketch

Upload

Serial monitor

Compile

Stop

30

The fourth button is the open sketch button. This button opens
the sketches folder and here you can choose to open already saved
sketches.

The fifth button is the save button. This button saves the present
sketches in the folder named sketchebook.

The sixth button is the upload button. This button will upload the
present program to your Arduino board assuming there is no errors
in your code. The upload button will first try to compile your code
and if it finds any errors it will stop compiling and a error message
will appear in the black window of the IDE, telling you what the
problem is and the IDE will highlight the line of code that is caus-
ing the problem.

The last button is the serial monitor button. This button will open
your serial monitor in the black space at the bottom of the IDE.
Some times it can get confusing to tell if the serial monitor is open
or not. The thing that tells the serial monitor apart from the normal
black space is that when the serial monitor is open a bar appears
with a drop down menu, a send button and a message box. To turn
the monitor off use the stop button.

At the top of the IDE you will find drop down menus as in any
other program.

31

In the file menu you will find all the functions of the buttons, your
sketchbook folder and preferences. In the edit menu you can find
the functions and commands for undo, redo, cut, copy, paste, select

all, find and find next. In the sketch menu you can verify/compile
your code, stop, import libraries, show the sketchbook folder and
add new file.

The two most important parts in the tools menu are the board
and serial port. The board option is where you select your type of
Arduino board. In the serial port you select which USB port you
have connected your Arduino board. The easiest way to determine
which port your board is connected to, since more the one port can
sow up in the menu, is to unplug you board and look which ports
are connected. Then you plug your board back again and the new
port that appearer in the list is your Arduino board.

Uploading code

To test if your installation of the software went well open the blink
example code found in:

file/ sketchbook/ examples/ digital/ blink.

Once you have the code present make sure you have the right board
type and serial port selected in the tools menu. Push the upload
button and if everything goes without problems, the LED on the
board next to pin 13 should start to blink on and off with a one
second delay.

Part two: Examples
How to realise your concepts into prototypes.

35

Examples

The following part of the book is the examples section. Here we
will present a collection of examples on how to create and use
both input and output devices and how to interface them with an
Arduino board.

These examples are not in any way finished prototypes but should
be considered as inspirational construction solutions and program-
ing techniques that can be useful for fashionable and wearable pro-
totypes.

This section will start of with more simple examples, gradually turn-
ing to more complex construction and techniques. All examples
start with a list of all components needed for them and all examples
are based on components and materials that should be supplied
by most electronic and electrical hobbyists stores. Some materials
can be tricky too find like conductive fabrics and thread. Use the
internet to find suppliers near you or compare online stores to find
materials at the best prices.

37

Chapter 5: Using digital Pins

As explained in chapter 2 the digital pins on the Arduino have only
two modes, either they are On or Off. The actual command for
these two states of the Arduino are 1 for on or 0 for off and that
is why we call theme digital pins. Normally we use the constants
HIGH and LOW since this makes it easier to read code compared
to using 0 and 1. Remember that the digital pin always gives the
output power of 5V when high and 0V when LOW. Don’t connect
anything straight to the digital pin if you don’t know that it can
handle 5V.

Part 1: Soft prototyping with LEDs

• Sewing a LED
This drawing illustrates how to sew your circuit on a piece of fabric.
You can use any piece of fabric as long as it is not conductive:

To make a soft prototype with LEDs
we need:

•	 Some	conductive	thread	
•	 One	LED	
•	 One	220	Ω resistor
•	 Non-conductive	fabric	

38

In this example we have made circles on the legs of the resistor and
both circles and squares of the legs on the LED. This isn’t only for
cosmetic reasons, it’s also practical - it makes it easier to sew the
components in place and the different shapes is also good for keep-
ing track of the long and short leg of the LED. For the voltage and
ground connection we have used cables, sewn in place with con-
ductive thread. This is a good technique to use while testing your
prototype and in final prototypes is recommended that you sew
your Arduino board on to the fabric and make straight connections
with conductive thread to your components.

• Coding a Blinking LED
Before you connect your Arduino we can test that this code works
and that there is no damage to you Arduino board. The Arduino has
a small built in LED next to your digital pin 13 that it’s connected
to pin 13 so with the following code example it should start to
blink:

int ledPin = 13;
/* an integer variable for the LED connected on digi-
tal pin 13 */

void setup(){
 pinMode(ledPin,OUTPUT);
 /* sets the ledPin as output */
}

void loop(){
 digitalWrite(ledPin,HIGH);
 /* turns on the ledPin */

 delay(1000);
 /* wait for one second */

 digitalWrite(ledPin,LOW);
 /* turns the ledPin off */

 delay(1000);
 /* wait for one second */
}

This program will turn the LED on for one second then off for one
second before starting over again.

Once you have written the program in your Arduino IDE press the
verify button and the message: “Done compiling“ should appear
in the black window. If there is no compiling errors make sure
you have the right com-port and board type selected in the tools
menu.

39

The next step is to upload the code to your Arduino board by press-
ing the upload button. There are two LED:s on the Arduino named
RX and TX. Ever time you try to upload a program to the Arduino
these two LED:s should start to flicker on and off. If they don’t,
have a look in your tools menu and check that the right com-port
and board type is selected. If there where no errors in uploading
the program is now stored in the Arduinos memory and will stay
there until you replace it with a new one and after 5 seconds the
program will start.

If the LED next to pin 13 on the board starts to blink it’s safe to
assume that the program was correctly uploaded and that there’s
nothing wrong with your Arduino board. This LED blink program
is good to use if you experience problems while making prototypes
and want exclude hardware failure from your debugging list.

Now it’s safe to connect the Arduino to your soft circuit. In the
following drawing we have used red for the cable that goes to the
digital pin 13 and black for the cable that goes back to the GND
on the Arduino:.

40

This is commonly how you color code your cables while working
with electronics. Red is used to mark a cable that connects to the
power out and black are used to mark cables as ground cables. All of
the following examples used in this book will follow the same color
scheme. Note that red cables does not mean that they are always
connected to the digital pins. In this example we are switching 5V
on and of on the digital pins and that is why we used red to mark
the cable.

• Coding a fading a LED
In the previous example we turned an LED on and off. As you
may have noticed the LED was set to maximum on (5V reduced to
with a resistor) to a complete off (0V). As I mentioned before the
digital pins have only two modes, HIGH and LOW. But the pigital
pins 3, 5, 6, 9, 10 and 11 has a special function called PWM. With
the PWM mode we can transformer to 5V output into a range of
255 possible levels. To learn more about the PWM function turn to
page ?. In the following example we are going to test how we fade
a led up and down:

int ledPin = 5;
/* connect your led to digital pin 5 */

void setup(){
 pinMode(ledPin , OUTPUT);
 /* declare ledPin as an OUTPUT */
}

void loop(){
 for(int i = 0; i < 255; i++){
 /* as long as i is smaller than 255, increases i by
 one */

 analogWrite(ledPin , i);
 /* fade the led to i */

 delay(30);
 /* small pause so we can see each step */
 }

 for(int i = 0; i > 0; i--){
 /* as long as i is bigger than 0, decreases i by
 one */

 analogWrite(ledPin,i);
 /* fade the led to i */

 delay(30);
 /* small pause so we can see each step*/
 }
}

Note:
To make the code more viewable we
use tabs to clarify the code trees.

In the above example we are using the command analogWrite()
which is the command for PWM on the LED. We are also using
two for loops, the first one starts counting from 0 and up to 255.
For every loop it makes it increases the voltage in the LED. Instead
of going from 0V to 5V in one instance it goes from 0V to 5V in
255 steps which makes the LED fade. The second for loop does the
opposite of the first one, it goes from 5V back to 0V in 255 steps.
The delay of 30 milliseconds gives us some time to notice the steps.
Now you can connect the LED as we did in previous example,
upload the code to your Arduino board and enjoy the fading. You
should be able to see the LED fade up and down again.

Part 2: Soft push button

There are different ways of making your own soft push buttons. All
of them are based on the same principle of creating a circuit from
and back to Arduino with a breaking point somewhere in the cir-
cuit. A braking point is where we can reconnect the circuit so we
can determine if the soft pushbutton is active (pushed) or not.

To make this soft push button start by cutting out two small pieces
of conductive fabric and glue them on two separate pieces of non-
conductive fabric. Then sew a cable at the end of both pieces and
sew a connection to each of the conductive fabrics. Take a piece of
foam and cut a hole through it. If you don’t have any foam you can
use a couple of layers of normal fabric. Once the hole is done, glue
one of the conductive fabric pieces on each side of the foam:

To make a soft push button we need:

•	 Conductive	fabric	
•	 Non-conductive	fabric	
•	 One	piece	of	foam
•	 Conductive	thread
•	 Cables	
•	 Fabric	glue

42

When you have the push button ready we can get started with the
program:

int myButton = 4;
/* declare digital 4 on the Arduino as myButton */

int ledPin = 13;
/* declare digital 13 on the Arduino as ledPin */

void setup(){
 pinMode(ledPin,OUTPUT);
 /* set ledPin as an OUTPUT */

 pinMode(myButton,INPUT);
 /* set myButton as an INPUT */

 digitalWrite(myButton,HIGH);
 /* activate internal resistor on pin 4 */
}

void loop(){
 if(digitalRead(myButton) == LOW){
 /*check if the button is pushed */

 digitalWrite(ledPin,HIGH);
 /* if the button is pushed, light led */

 }else{
 digitalWrite(ledPin,LOW);
 /* if the button isn’t pushed, turn off led */

 }
}

Now we can upload the program to our Arduino board and con-
nect the push button. One end connects to our digital pin 4 and the
other one is connected to GND. The above program will check if
the push button is pushed and light up the LED next to digital pin
13. If the button isn’t pushed the LED will remain off.

Part 3: Hidden push button

The following are two simpler ways of making hidden push but-
tons, appropriate when you need a discrete input hidden in gar-
ments. You can use the same code as above to try them out. The first
one is made with two sew-on metal snap buttons that can be found
in any sewing shop. You sew the buttons in place using conductive
thread and connect two cables at the end.

To make hidden push button we need:

•	 Sew-on	metal	snap	button,	or
•	 Sew-on	metallic	button,	or
•	 Jeans	button
•	 Non-conductive	fabric	
•	 Conductive	thread
•	 Cables	

Note:
In the setup we turn 5V on to the
button. Every time we push the but-
ton we redirect the power to GND
and if we read the status of the push
button pin it will tell us LOW since
there is no power in the pin at that
moment.

43

The last hidden button is made like a normal button. The trick is to
yet again to use conductive thread to sew the button in place and
then sew around the button hole using the same thread. Most mod-
ern sewing machines have a preprogrammed function for making
button holes and will work perfectly for this. Just load you machine
with conductive thread and cut the hole in the fabric. This example
works the same way either with a normal sew-on button or a jeans
button.

In these examples we have put cables at the end to make it easier for
rapid testing. For finalizing prototypes it works as well to sew each
button with conductive thread all the way back to your Arduino.

44

Part 4: Sound

The cheapest way of making sound with the Arduino is to use a
piezo speaker. Piezoelectricity speaks of the ability in material to
respond to applied mechanical stress. A piezo speaker consists of two
metal plates and when electricity is applied to the piezo speaker it
will make the metal plates attract and repel generating quick vibra-
tion which in turn will generate sound. Piezo speakers are available
in a large range of shapes and sizes. In the example we are only go-
ing to use the membrane of the piezo speaker. You can buy the pi-
ezo speaker membrane in most well sorted electronic shops or you
can break the plastic casing of a full piezo speaker. If you choose to
break one be careful not to bend the actual membrane while taking
the speaker apart. Once you have the membrane start preparing a
piece of fabric:

Attach two cables 1/3 of the way on each side of the fabric. Stitch
the end of the cable without the covering plastic with conductive
thread and then attach the remaining part of cable to the fabric with
normal thread. Do not use conductive thread when you stitch the
rest of the cable to the fabric since this will create a short circuit
once we put the piezo speaker membrane in place. The stitchings
with normal thread are only meant to hold the cables in place. Place
the element over one side and fold the other side over it and stitch
everything together with normal thread. It’s good to stitch around
the membrane since it need to be quite snug for the cables to con-
nect on booth sides of the membrane.

To make a soft speaker we need:

•	 One	piezo	speaker	
•	 Non-conductive	fabric	
•	 Conductive	thread	
•	 Two	wires	

45

Now we have a piezo speaker that is a bit softer than a normal one
and we can get started on some programs to generate sounds. To
make the vibrations that generates sound we will pulse the piezo
with power. To make these pulses fast enough to generate vibrations
we cant use the normal delay() since this pause isn’t quick enough.
Instead we will use delayMicroseconds(). In the following example
we will generate a vibration that creates the tone A:

int piezoPin = 9;
/* plug the piezo to pin 9 */

void setup() {
 pinMode(outputPin OUTPUT);
 /* declare the piezo pin as an output */
}

void loop() {
 digitalWrite(outputPin,HIGH);
 delayMicroseconds(1136);
 /* the time here will determine the tone */

 digitalWrite(outputPin,LOW);
 delayMicroseconds(1136);
 /* the time here will determine the tone */

}

In the above example we turn the 5V to the piezo on and off and in
between we make a pause of 1136 microseconds. This pause is what
determines what tone is generated. If for instance we pause for 1911
microseconds we would instead get the tone C.

Fold here

46

Part 5: Tilt sensor

Start by attaching the tilt sensor and a 1kΩ resistor to a piece of fab-
ric. Sew a few loops over the tilt sensor to keep in place with some
normal thread. Stitch three cables to the fabric using conductive
thread and make the following connections as shown in the below
illustration:

Now we can start with our program. In this program we are go-
ing to light up the on board LED of the Arduino when we tilt the
sensor.

int myTilt = 4;
/* declare pin for tilt sensor */

int ledPin = 13;
/* declare pin for on board led */

int tiltStatus = 0;
/* declare variable to store the status of the tilt
sensor */

void setup(){
 pinMode(myTilt,INPUT);
 /* declar tilt pin as INPUT */

 pinMode(ledPin,OUTPUT);
 /* declar LED pin as OUTPUT */

}

To make a soft speaker we need:

•	 One	1k	Ω resistor
•	 One	tilt	sensor	
•	 Non-conductive	fabric	
•	 Conductive	thread	
•	 Two	wires	

47

void loop(){
 tiltStatus = digitalRead(myTilt);
 /* read tilt pin and store the value */

 if(tiltStatus == HIGH){
 /* check if tilt sensor is tilted */

 digitalWrite(ledPin,HIGH);
 /* turn of LED if tilt sensor is tilted */

 }else{
 digitalWrite(ledPin,LOW);
 /* turn off LED in every other case */

 }
}

Once you are done with your code, upload it to the Arduino board
and connect your tilt sensor as shown in the illustration on the
previous page.

Now when you tilt the fabric the LED next to pin 13 on the Ar-
duino board should light up. As described in the section on the tilt
sensor in chapter 2 page 16, you can use this type of tilt sensor to
detect movement. It’s a matter of making a estimate of how many
hits you get from the tilt sensor in a certain amount of time. Let’s
say that the tilt sensor goes from on and off 2 times every second,
then its safe to assume that the garment the tilt sensor is placed on,
is moving.

Part 6: The digital zipper

There are two ways we can use a normal metal zipper to make an
input sensor. The difference between them is in how we read them
from the Arduino. In this chapter we are going to read our zipper
the digital way.

The advantage of using this zipper compared to the analog zipper
on page?, is that the digital will be more precise in it’s reading but
the disadvantage is that we will get a much lower range of values to
read. The range will depend on how many digital pins you want to
use. In this example we are going to use six of our digital pins on
the Arduino.

For this example you will need:

•	 Normal	zipper	in	metal	
•	 Conductive	thread	
•	 10K	resistor	

48

Start by attaching a red cable at the end on one side of the zipper
with some conductive thread. Then put a 10kΩ resistor in place on
the other end of the red cable. Make a connection with conductive
thread from the other side of the resistor and all the way from the
bottom of the same side of the zipper all the way to the top. Make
sure you stitch in between all of the teeth’s of the zipper. On the
other side of the zipper you should attaching six wires along the
side. Once all the six wires are in place start sewing a line from the
wire to the metal teeth of the zipper and make a few stitches be-
tween the teeth, upwards, on the zipper.

Make sure to leave a gap between the stitchings from one wire to
the next one. None of the six wires should be connected to one
another with conductive thread. Once the zipper is stitched up we
can start with our code:

int pin2 = 2; // declaration of digital pin
int pin3 = 3; // declaration of digital pin
int pin4 = 4; // declaration of digital pin
int pin5 = 5; // declaration of digital pin
int pin6 = 6; // declaration of digital pin
int pin7 = 7; // declaration of digital pin
int pin8 = 8; // declaration of digital pin

void setup(){
 pinMode(pin2,INPUT);
 /* set the mode of the pin to an INPUT */

 pinMode(pin3,INPUT);
 /* set the mode of the pin to an INPUT */

 pinMode(pin4,INPUT);
 /* set the mode of the pin to an INPUT */

 pinMode(pin5,INPUT);
 /* set the mode of the pin to an INPUT */

 pinMode(pin6,INPUT);
 /* set the mode of the pin to an INPUT */

49

 pinMode(pin7,INPUT);
 /* set the mode of the pin to an INPUT */

 Serial.begin(9600);
 /* start serial communication and set the communi
 cation speed to 9600 baud */
}

void loop(){
 if(digitalRead(pin2) == HIGH){
 /* check if the pin is HIGH */

 Serial.println(2);
 /* if it is, send the number of that pin */

 }

 if(digitalRead(pin3) == HIGH){
 /* check if the pin is HIGH */

 Serial.println(3);
 /* if it is, send the number of that pin */

 }

 if(digitalRead(pin4) == HIGH){
 /* check if the pin is HIGH */

 Serial.println(4);
 /* if it is, send the number of that pin */

 }

 if(digitalRead(pin5) == HIGH){
 /* check if the pin is HIGH */

 Serial.println(5);
 /* if it is, send the number of that pin */

 }

 if(digitalRead(pin6) == HIGH){
 /* check if the pin is HIGH */

 Serial.println(6);
 /* if it is, send the number of that pin */

 }

 if(digitalRead(pin7) == HIGH){
 /* check if the pin is HIGH */

 Serial.println(7);
 /* if it is, send the number of that pin */

 }

 delay(200);
 /* make a pause */
}

50

Upload the code to your Arduino board and connect the zipper.
The red cable goes to 5V pin on the board and the rest of the wires
should be connected to digital pins 2 to 7. Once everything is in
place you can open your serial monitor and test your zipper. By
moving it up and down the Arduino should give you number from
2 to 7. What we are doing here is to measure where the zipper head
is located since it connects the 5V to a digital pin, thus sending the
current through that pin, making the value HIGH and then, in the
code, transforming that information into a number, telling us which
one of the pins that is communicating.

51

Chapter 6: Using analog pins

As said earlier in this book, the real world is not digital and some-
times you can’t transfer changes in our environment into digital
readings. For example temperature does not change from only hot
to cold, it changes within a range of different values and normally
these changes occur slowly over time. This is why we often use ana-
log sensors to read environmental parameters like temperature, light
and motion. This resulting information is stored as sequential digital
data. Since the Arduino can’t handle information like humans, we
need to translate analog information in a way that the Arduino can
understand it.

Analog sensors can transform data in our environment into a volt-
age value between 0V and 5V. These values are different from the
HIGH and LOW that the digital pins use. For the digital pins
HIGH and LOW means respectively 5V and 0V and nothing else.
But the analog pins can make sense of values like 0.3V, 1.6V, 3,2V
and so on.
The resolution in between a max and min value differs from mi-
croprocessors. Arduino can only distinguish 1024 levels in the range
of 0V to 5V.

Part 1: The analog zipper

The analog zipper is different from the digital one in the earlier
chapter. The digital zipper can only be HIGH or LOW (0V or 5V).
The analog zipper on the other hand can give you a range of values
in between 0V and 5V. To make a analog zipper you need a normal
zipper, some conductive thread and a 10kΩ resistor.

Start off by sewing the resistor in place. Then we sew one red wire
to one end of the resistor and a blue one to the other end of the
resistor. The colors of the cables are used so you will remember
what cable goes where. From the same place as the blue cable start
sewing in between every tooth of the zipper. When we reach the
end of one side of the zipper do the same on the other side and
back down again.

To	make	an	analog	zipper	we	need:	

•	 One	metal	zipper
•	 Conductive	thread	
•	 One	10kΩ resistor
•	 Two	wires

Note:
When we do analog reading the Ar-
duino	starts	counting	at	0	so	you	will	
never	get	a	reading	that	is	over	1023.	

Make sure the thread is intact all the way round the zipper or it
will not work. Once you have reached the end of the zipper on the
other side attach a black cable and sew it into place. Now our zip-
per is done and we can start writing our code to read what kind of
values the zipper will give. To be able to show what kind of values
the zipper gives us we will need to use serial communication so
that the Arduino can report back to the computer and show us the
values in the serial monitor:

int analogPin = 2
/* here we declare that we want to use analog pin 2
and call it analogPin */

int myZipper = 0;
/* here we have declared a integer that will act as a
temporary variable so we can store the values that the
zipper will give us */

void setup(){
 Serial.begin(9600);
 /* this will setup your communication and set the
 communication to 9600 baud */

}

void loop(){
 myZipper = analogRead(analogPin);
 /* here we do an analog reading on analogPin and
 save the value in the varible myZipper */

 Serial.println(myZipper)
 /* this command will send the value stored in myZ
 ipper and send it over the serial port and then
 make a break. */

 delay(200);
//pause for 200 milliseconds
}

The first thing we do in our void loop() is to make an analog read-
ing on our analog pin 2. The value returned by this command is
saved in the variable myZipper. After the reading of the analog pin
we print this value over the serial port and anything connected to
the Arduino (for instance; a computer) will receive whatever was
stored in myZipper. The last thing we do is adding a delay in our
program since even if the Arduino is small it still can communicate
faster than a normal computer so the delay lets your computer keep
up with the Arduino.

Now we can upload our code to the Arduino board. Once the
code is uploaded we plug the red cable into the port that says 5V,
the black cable to one of the GND ports and the last cable to our
analog pin 2. If you declare your analogPin in your program as
anything else than 2 you will have to put the yellow cable in the
corresponding analog port:

Note:
We don’t have to declare the mode
for the analog pin as we would have
to do if it was a digital pin.

Once we have uploaded the code and connected your cables we
can open our serial monitor, which is the button on the far left in
your Arduino IDE. Now values should appear in our serial monitor
and if we open and close the zipper the values should change. If you
can’t see any numbers in your monitor, make sure the communica-
tion speed set in the Arduino IDE is the same as in your program
(9600 baud in this example). Each zipper will give you different
values since making an analog zipper isn’t an exact science yet, the
slightest difference will affect the result. This form of home made
analog sensor is still good enough to be used for most prototypes
that need a hidden input device.

Part 2: Using an LDR

The following drawing illustrates how to sew the LDR and resistor
onto a piece of fabric and where the wires should connect to the
arduino.:

For the following example you will
need:

•	 One	LDR	
•	 One	10k	resistor	
•	 Conductive	thread	
•	 Three	wires

55

The resistor in the example is used as what is called a “pull up re-
sistor”. We sometimes use pull up resistors to ensure we won’t get
5V straight back in the Arduino. A pull up resistor is the same as a
normal resistor but we use them to lower the output voltage from a
power source. Connect a red cable to one of the legs of the resistor
and to 5V on the Arduino. In between the resistor and the LDR
we put a cable that connects to our analog pin on the Arduino. The
same connection goes to one leg of the LDR. It doesn’t matter
which leg you connect it to. From the other leg of the LDR, sew a
cable that connects to GND on the Arduino:

When you have connected everything lets try the following code
and see what values the LDR will give us:

int analogPin = 2;
/* the analog pin we are using on the Arduino */

int myLDR = 0;
/* temporary variable to store the LDR value */

void setup(){
 Serial.begin(9600);
/* setting up communication and communication speed */

}

void loop(){
 myLDR = analogRead(analogPin);
 /* read the value from ther LDR and store it */

 Serial.print(myLDR);
 /* print the value stored in myLDR */

 delay(200);
}

In the above code example we read the value, store it and print it
back to the computer. Don’t forget to open your serial monitor
in the Arduino IDE and set it to 9600 baud to be able to see the
value printed from the Arduino. Once you get everything to work,
try covering the LDR with your hand and check what value the
Arduino prints back. Remember this value and try the next code
example.

56

int analogPin = 2;
/* the analog pin we are using on the Arduino */

int myLDR = 0;
/* temporary variable to store the the LDR value */

int myDarkNumber = 100;
/* the threshold for dark */

int ledPin = 13;

void setup(){
 Serial.begin(9600);
 /* setting up communication and speed */

 pinMode(ledPin,OUTPUT);
 /* declare ledPin as OUTPUT */

}

void loop(){
 myLDR = analogRead(analogPin);
 /* read the value from the LDR and store it */

 if (myLDR <= myDarkNumber){
 digitalWrite(ledPin,HIGH);
 }else{
 digitalWrite(ledPin,LOW);
 }
}

In this example the variable named “myDarkNumber” is the value
you got back from the previous example when you covered the
LDR with your hand. In my case it is 100 but you should change
this number to your value. This program will read the value from
the LDR and compare it to your threshold variable (myDarkNum-
ber) and if the LDR is below or equal to this threshold the internal
LED on the Arduino board will light up, if not the LED will remain
off.

57

Part 3: Using an NTC (Thermistor)

The following code to read the thermistor is the same as for the
LDR which works fine since they’re both analog sensors:

int analogPin = 2;
/* the analog pin we are using on the Arduino */

int myNTC= 0;
/* temporary variable to store the value from the
thermistor */

void setup(){
 Serial.begin(9600);
/* setting up communication and communication speed */
}

void loop(){
 myNTC = analogRead(analogPin);
 /* read the value from the NTC and store it */

 Serial.print(myNTC);
 /* print the value stored in myNTC */

 delay(200);
}

Now hook everything up as in the following illustration and upload
the code to your Arduino board.

Once everything is in place open you serial monitor and try to heat
up your thermistor with your hands. You should be able to see some
shifts from the original value upon start up. Even if thermistors
aren’t the best sensor for telling the exact temperature they’re still
an easy and cheap way of sensing heat and cold.

59

Chapter 7: Moving stuff

• DC motors
These types of motor are usually found in toys and devices that
don’t need a lot of accuracy in terms of angle and speed. A DC
motor runs freely when power is applied and it’s hard to control
the speed and position of them but with some extra circuit and
components this can be improved. The good thing with DC mo-
tor is that some can be found very cheap and they are often used is
cheep electrical device that has some kind of motion. Hacking for a
DC motor is quite easy since it only uses two cables. Another good
thing about DC motors are that some of them can be powered with
less then 2.5V.

The following example shows how to use a small DC motor also
known as a mini vibrator.

This can be run straight from the digital pins on the Arduino but
beware that with other DC motors you might need more power so
be sure to use appropriate resistor or transistor if you want to power
it with external power.

To sew a mini vibrator start to glue it to a piece of fabric. You can
also sew over it using normal thread but this might be a bit tricky
since most mini vibrators are round.

Once the vibrator is in place, cut the plastic of the wires and stitch
over theme with some conductive thread. Now sew two cables, one
black and one red to your fabric and make a connection from the
black one to one cable on the vibrator and from the red one to the
other one:

With a DC motor it doesn’t matter which cable you apply power to
and which is connected to GND. The difference is when you apply
power to on cable the motor spins one way and if applied to the
other side it will spin the other way.

60

Now when we have everything in place lets write the following
program:

int motoPin = 5;

void setup(){
 pinMode(motoPin,OUTPUT);
}

void loop(){
 digitalWrite(motoPin,HIGH);
 delay(1000);
 digitalWrite(motoPin,LOW);
 delay(1000);
}

This is a simple program to turn the vibrator on for one second and
off for one second. It’s also possible to turn the vibration speed up
and down gradually using PWM:

int motoPin = 5;
/* connect your led to digital pin 5 */

void setup(){
 pinMode(motoPin,OUTPUT);
 /* declare ledPin as an OUTPUT */
}

void loop(){
 for(int i = 0; i < 255; i++){
 /* as long as i is smaller than 255, increases i by
 one */

 analogWrite(motoPin ,i);
 /* fade the speed of the vibrator with i */

 delay(30);
 /* small pause so we can see each step */

 }

 for(int i = 0; i > 0; i--){
 /* as long as i is bigger than 0, decreases i by
 one */

 analogWrite(motoPin,i);
 /* fade the speed of the vibrator with i */

 delay(30);
 /* small pause so we can see each step */

 }
}

The above example will turn the vibrator slowly up to the maxi-
mum speed and back again.

61

• Servo motors
There are two types of servo motors, normal servo and continu-
ous rotation servos. The normal ones are controlled with PWM
and rotate to a position depending on the pulse width. The normal
servos can only rotate from 0 degrees to 180 degrees. The continu-
ous rotation servos keep on rotating when pulse with power. The
most common continuous rotation servos from Parallax rotate in
one direction when pulsed with power with a delay above 1500
microseconds and the other way when pulse with a delay below
1500 microseconds.

Depending on your project you will have to use your imagination
to hide a servo motor. In the following example we will only show
how to control servo motors since there are no general ways of
implementing servos in fabrics. Extending the wire length from the
servo to Arduino is still possible by the use of conductive thread.
The first example is a simple program that illustrates how to move
a continuous servo motor forward and back:

int motoPin = 4;
/* digital pin for the servo */

void setup(){
 pinMode(motoPin,OUTPUT);
 /* declare digital pin as output */

}

void loop(){
 for(int i = 0; i < 100; i++);{
 /* loop 100 times so we can see the servo move */

 digitalWrite(motoPin,HIGH);
 delayMicroseconds(1850);
 /* the delay above 1500 to make the servo go one
 way */

 digitalWrite(motoPin,LOW);
 delayMicroseconds(1850);
 }

 for(int j = 0; j < 100; j++);{
 /* loop 100 times so we can see the servo move */

 digitalWrite(motoPin,HIGH);
 delayMicroseconds(1250);
 /* the delay below 1500 to make the servo go the
 other way */

 digitalWrite(motoPin,LOW);
 delayMicroseconds(1250);
 }
}

62

This program will make the continuous rotation servo go 100 steps
one way then 100 steps the other way. Once your code is done,
upload it to The Arduiono board and connect the motor like in the
following illustration.

63

Chapter 8: Complex examples

Part 1: Oscillation with a Zipper
Oscillation is the variation in time of a central value or between two
or more states. With an oscillator we can change the tone manually
of our piezo speaker from the previous example.
The analog Zipper on page ? will work perfect as an oscillator since
it gives us nice range of values that can be remapped to a range of
different tones.

The following program will read the values from the zipper, remap
these values and then use the value to set the tone to be played by
the piezo speaker:

int piezoPin = 10;
/* declares the pin the piezo speaker is attached to
*/

int analogPin = 2;
/* declares the pin the zipper is attached to */

int myTemp = 0;
/* declares a temporary storage variable */

int myRemapValue = 0;
/* declares a variable for the remapped value */

void loop(){
 pinMode(piezoPin,OUTPUT);
 /* declare piezoPin as output */

}

void loop(){
 myTemp = analogRad(analogPin);
 /* read and store the value from the zipper */

 myRemapValue = map(myTemp,100,300,0,2000);
/* remapp the value from the zipper to fit within the
range of 0 through 2000 */

 digitalWrite(piezoPin,HIGH);
 /*send 5V to the piezo speaker */

 delayMicroseconds(myRemapValue);
 /* pause with the remapped value */

 digitalWrite(piezoPin,LOW);
 /* send 0V to the piezo speaker */

 delayMicroseconds(myRemapValue);
 /* pause with the remapped value again */

}

For this example you will need:

•	 The	piezo	speaker	(from	page	?)	
•	 The	analog	zipper	(from	page	?)

Note:
You need to know what the maximum
and	minimum	value	the	zipper	gives	
you. In this example we will use a
fictive	range	of	100	to	300.

64

This example implements the use of the map() function. To learn
more about the map() function turn to page ?. Your zipper might
give values good enough to set some tones directly, but they will
have much lower range than wanted since an analog sensor ne-
ver gives a value above 1023. Once you’re done with the code try
hooking everything up to the Arduino board as shown in the illu-
stration and test the zipper oscillator.

Part 2: The soft synthesizer

Use the same method of creating soft pushbutton as shown in the
example on page ?. But for this example we will use one big piece
of fabric to make place for all pushbuttons:

To	make	a	soft	synthesizer	you	will	
need:
•	 Five	soft	pushbuttons
•	 One	piezo	speaker	
•	 Five	wires	
•	 Conductive	thread	
•	 Conductive	fabric	
•	 One	piece	of	normal	fabric

65

On one side of the buttons attach 5 cables and sew a connection to
one piece of conductive fabric from one cable to another for all the
pushbuttons. From the other side of the pushbutton to the other
piece of conductive fabric we will sew a connection to a long line
of thread and at the end of this thread we will connect a black wire.
This will act as a ground connection for all the buttons since there
is not enough GND ports on the Arduino for all the buttons.

Now that we have the soft keyboard part ready for our soft synthe-
sizer we can start on our program:

int piezoPin = 10 ;
/* declare the pin which the piezo speaker is attached
to */

int keyOne = 2;
/* declare the first soft button */

int keyTwo = 3;
/* declare the second soft button */

int keyThree = 4;
/* declare the third soft button */

int keyFour = 5;
/* declare the fourth soft button */

int keyFive = 6;
/* declare the fifth soft button */

void setup(){
 pinMode(piezoPin,OUTPUT);
 /* declare the piezopin as output */

 pinMode(keyOne,INPUT);
 /* declare the first soft button as input */

 pinMode(keyTwo,INPUT);
 /* declare the second soft button as input */

 pinMode(keyThree,INPUT);
 /* declare the third soft button as input */

 pinMode(keyFour,INPUT);
 /* declare the fourth soft button as input */

 pinMode(keyFive,INPUT);
 /* declare the fifth soft button as input */

 digitalWrite(keyOne,HIGH);
 /* send 5V to the first soft button */

 digitalWrite(keyTwo,HIGH);
 /* send 5V to the second soft button */

 digitalWrite(keyThree,HIGH);
 /* send 5V to the third soft button */

 digitalWrite(keyFour,HIGH);
 /* send 5V to the fourth soft button */

66

 digitalWrite(keyFive,HIGH);
 /* send 5V to the fifth soft button */

}

void loop(){
 if(digitalRead(keyOne) == LOW){
 /* tests if the first soft button is pushed */

 digitalWrite(piezoPin,HIGH);
 /* sends 5V to the piezo speaker */

 delayMicroseconds(1911);
 /* waits for 1911 microseconds (creates a C) */

 digitalWrite(piezoPin,LOW);
 /* stops sending 5V to the piezo speaker */

 delayMicroseconds(1911);
 /* waits for another 1911 microseconds */

 }

 if(digitalRead(keyTwo) == LOW){
 /* tests if the second soft button is pushed */

 digitalWrite(piezoPin,HIGH);
 /* sends 5V to the piezo speaker */

 delayMicroseconds(1703);
 /* waits for 1703 microseconds (creates a D) */

 digitalWrite(piezoPin,LOW);
 /* stops sending 5V to the piezo speaker */

 delayMicroseconds(1703);
 /* waits for another 1703 microseconds */

 }

 if(digitalRead(keyThree) == LOW){
 /* tests if the third soft button is pushed */

 digitalWrite(piezoPin,HIGH);
 /* sends 5V to the piezo speaker */

 delayMicroseconds(1517);
 /* waits for 1517 microseconds (creates an E) */

 digitalWrite(piezoPin,LOW);
 /* stops sending 5V to the piezo speaker */

 delayMicroseconds(1517);
 /* waits for another 1517 microseconds */

 }

 if(digitalRead keyFour) == LOW){
 /* tests if the fourth soft button is pushed */

 digitalWrite(piezoPin,HIGH);
 /* sends 5V to the piezo speaker */

 delayMicroseconds(1432);
 /* waits for 1432 microseconds (creates an F) */

67

 digitalWrite(piezoPin,LOW);
 /* stops sending 5V to the piezo speaker */

 delayMicroseconds(1432);
 /* waits for another 1432 microseconds */
 }

 if (digitalRead(keyFive) == LOW){
 /* tests if the fifth soft button is pushed */

 digitalWrite(piezoPin,HIGH);
 /* sends 5V to the piezo speaker */

 delayMicroseconds(1276);
 /* waits for 1276 microseconds (creates a G) */

 digitalWrite(piezoPin,LOW);
 /* stops sending 5V to the piezo speaker */

 delayMicroseconds(1276);
 /* waits for another 1276 microseconds */

 }
}

This program check all the buttons as soon as one of them is pushed
it will start to play the tone of that key. In this example we are go-
ing to use the tones C, D, E, F and G. At the end of this chapter you
can find a chart of tone and their corresponding delay time. Once
you have the program ready, upload it to your Arduino board and
connect your soft keyboard and piezo speaker as in the following
illustration:

Note:
The	five	blue	cables	are	connected	
to digital pins 2 through 6 on the
Arduino board. The black cable is
connected to GND. The black cable
from	the	soft	piezo	speaker	is	also	
connected to one of the GND pins
and the red cable is connected to
digital	pin	10.	

The piezo speaker could also be implemented into the keyboard
fabric to make your design nicer.

Chart of tones and there delay time

tone delay
C 1911
D 1703
E 1517
F 1432
G 1276
A 1136
B 1012
C 0956

Part 3: Controlling a normal servo with a zipper

In this example we will use the analog zipper from page ? To con-
trol the rotation of a normal servo motor. The following illustration
show how to connect both the servo and the zipper:

To	control	a	servo	with	a	zipper	you	
will need:
•	 The	analog	zipper	(page	?)
•	 One	normal	servo	motor

69

To write the program you first have to know the maximum and
minimum value of your zipper. Turn to page ? If you don’t remem-
ber how to read values from a analog sensor.
The minimum and maximum value from the zipper will be re-
mapped in our program using the map() function to the minimum
and maximum rotation value of the servo motor:

int servoPin = 2;
/* digital pin for the servo motor */

int servoMin = 500;
/* minimum servo position */

int servoMax = 2500;
/* maximum servo position */

int pulse = 0;
/* amount to pulse the servo */

long lastPulse = 0;
/* the time in milliseconds of the last pulse */

int refreshTime = 20;
/* the time needed in between pulses */

int myZipper = 0;
/* the value returned from the analog sensor */

int analogPin = 0;
/* the analog pin that the sensor’s on */

void setup() {
 pinMode(servoPin,OUTPUT);
 /* Set servo pin as an output pin */

 pulse = servoMin;
 /* Set the motor position value to the minimum */

 Serial.begin(9600);
}

void loop() {
 myZipper = analogRead(analogPin) ;
 /* read the analog input */

 pulse = map(myZipper,0,1023,servoMin,servoMax);
 /* remapp the value from zipper to a range between
 minPulse and maxPulse */

 if (millis() - lastPulse >= refreshTime) {
 /* if millis (which is the amount of milliseconds
 the arduino has been powered on) minus the value
 from “lastPulse” is larger than or equal to the
 value in “refreshTime” then this piece of code is
 triggered */

 digitalWrite(servoPin,HIGH);
 /* Turn the motor on */

 delayMicroseconds(pulse);
 /* Length of the pulse sets the motor position */

 digitalWrite(servoPin,LOW);

70

 /* Turn the motor off */

 lastPulse = millis();
 /* save the time of the last pulse */
 }
}

This program will read the value from the zipper and remap this
value into a pulse that will be used to set the position of the motor.
Once you are done with your code upload it to your board and try
to move the zipper to move the servo motor. In this program you
have to add the maximum and minimum value of your zipper in
the map function “ map(myZipper, “your zipper min” , “your zip-
per max”, 500, 2500); ”.

Part 4: Touch sensitive embroidery
In this example we are going to make an embroidery touch sensi-
tive which will make the embroidery act like a button.

To make embroideries we need to use a extra chip. The QT118
chip is a touch sensor that is self-contained digital IC and capable
of detecting near-proximity or touch. There different types of QT
chips and the QT118 we are going to use can only handle one
touch sensitive input. The QT chip works like a on off switch and
you can extend the touch sensitivity from the chip with any con-
ductive material like a wire or conductive thread. The following
illustration shows the legs of the QT118 chip and where they need
to be connected to:

To make an embroidery touch sensitive we need to add a capacitor.
The capacitor will even out the signal coming from the QT chip
into our embroidery to be able to generate a reference value. The
QT chip will use this reference value to compare the signal when to
embroidery is touched to when it’s not. The following illustration
shows how to connect the capacitor to the chip and where you can
start with your embroidery:

All parts that you want to be touch sensitive have to be connected
to the thread that connects to the pin of the chip. Connect the fol-
lowing wires to the chip.

For the example you will need:
•	 One	QT118	chip
•	 One	33n	capacitor	
•	 Conductive	thread	
•	 Six	cables	

71

Once all connections to the chip has been made we can start writ-
ing our program. The QT118 will send a signal of 5V when it is
touched. We can read this signal on both the digital and analog but
if you have available digital pins it doesn’t make sense to use analog
pins since the signal will only be read as either 0 (the chip is not
touched) or 1023 (when the chip is touched). The following pro-
gram is a simple sketch on how to light up the on board LED when
the embroidery is touched:

int ledPin = 13;
/* on board LED on the Arduino */

int touchChip = 2;
/* connect output signal from touch chip to pin 2 */

void setup(){
 pinMode(ledPin ,OUPUT) ;
 /* declare ledPin as OUTPUT */

 pinMode(touchChip,INPUT) ;
 /* declare touchChip as INPUT */

}

void setup(){
 if (digitalRead(touchChip) == HIGH){
 /* check if the embroidery is touched */

 digitalWrite(ledPin,HIGH)
 /* if it is, light up the LED */

 }else{
 digitalWrite(ledPin,LOW);
 /* if not, turn the LED off */

 }
}

Once the code is done we can upload it to the board. Then we con-
nect the embroidery with the chip as in the illustration.

The embroidery will be sensitive from both side so if you want to
be able to wear a touch sensitive embroidery you need to put some
protective fabric on the inside of you garment. You may need to
experiment with some fabrics to find one that is thick enough for
you embroidery and make sure that the fabric you are using isn’t
conductive.

Part three: Coding
How to write programs for the Arduino.

75

Chapter 9: Writing Programs

An Arduino program is made of code written in a coding language
called C. When writing code it’s important to keep in mind that
the Arduino doesn’t function as a human being, it doesn’t reason.
If someone pronounces a word incorrectly you will probably still
under-stand the meaning - the Arduino however will not. If you
misspell a command while writing code in the Arduino IDE, it
won’t understand what you are trying to do.

Another thing to keep in mind is that the Arduino is logical but not
rational. It does not know what you want to do, it only does what
you tell it to do.

Basic structure

When we are writing code in the Arduino IDE we use a basic three
step structure.

• variable declaration
• the setup()
• the loop()

The setup() and the loop() are essential for writing a functioning
program. As you become more confident in writing code for the
Arduino you will realize that it isn’t mandatory to write code using
these steps. However it is a useful way of structuring since it makes
the program easier to overview which helps when you’re looking
for errors in the code. The following is an example of a simple pro-
gram that turns the on board LED of the Arduino on and off:

int ledPin = 13
void setup(){
 digitalWrite(ledPin,OUTPUT);
}

void loop(){
 digitalWrite(ledPin,HIGH);
 delay(1000);
 digitalWrite(ledPin,LOW);
 delay(1000);
}

76

Variables

A variable is like a container for something else. Let’s say you want
to read a sensor of some kind. This sensor will give you a value,
most certainly in the form of number. If you want to use this value
in more the one part of your program you can store this value in
a variable to save time. Before we can store the value we need to
declare the variable, this means we tell the program that the variable
exists and what kind of variable it is.

We have to name the variable. The name could be anything but it is
a good idea to give your variables names that are logical. When you
overview your program it will be easier to determine what kind of
value is stored in a variable named “tempSensor”. It might be harder
to remember what is hidden in variables with names like “banana”,
“peter” or “supercalifragilisticexpialidocious”. More on this is ex-
plained in the Variable types and Declaration section on page ?.

Void setup

The first thing the Arduino does when it starts is to look for the
void setup(). This is one of the essential steps of a functional pro-
gram. The void setup() is the part that initializes the mode of dif-
ferent parts of the Arduino for instance the mode of your pin or to
setup communication speed. The void setup() only runs once upon
startup and will not run again until the Arduino is powered off and
back on again.

The following is an example of a void setup that sets the mode of
a pin as an output.

void setup(){
 pinMode(pin,OUTPUT);
}

Void loop

The void loop() is the second essential step to a functional program.
This is where the actions of your program takes place. As the name

Note:
It’s always good to put your variables
in the beginning of the code.

77

suggests this part runs over and over again. In an Arduino program
all the code is executed line by line. After the Arduino leaves the
void setup() upon startup it looks for the void loop() and enters it.
It then starts to do everything that is in your code from the start
to bottom of the void loop(). When it reaches the bottom of the
void loop() it simply starts over again which allows the program to
change. The following is the void loop() from the example at the
start of the chapter:

void loop(){
 digitalWrite(ledPin,HIGH);
 delay(1000);
 digitalWrite(ledPin,LOW);
 delay(1000);
}

This void loop() contains code that will turn the pin with the same
number as the variable named “ledPin” on. The next line in the
code makes a delay and then turns the same pin off and then makes
a new delay. If we were to run this code in an Arduino with a LED
connected to the pin with the same number as the variable named
“ledPin” it would blink the LED on and off with one second delay
until we turn the power off.

Brackets

Brackets are used to define the beginning and ending of certain
parts of code. There are two types of brackets used when writing
code for the Arduino. The first ones are the left and right parenthe-
sis () and are normally just called brackets. These brackets are used
when we are writing functions inside our programs. They are used as
a space for sending a variable somewhere else within your program.
It is also possible to have a function with the brackets empty but it is
still necessary to put them after your functions name or the Arduino
will give you a compiling error. An example of functions that use
empty brackets are the void setup() and void loop(). To learn more
about functions read under Functions chapter on page ?.

78

The second type of brackets are the braces or curly brackets {}.
These are used to show the start and end of a function. Without
these brackets the Arduino will not be able to know where the
function begins and ends and what to consider the next piece of
the code. One common place for these brackets is the void setup()
function.

void setup(){
 //The code in the function goes in here.
}

Semicolon

Semicolons are one of the most important parts of writing code
for the Arduino and one of the most easy to forget. They are used
to separate the different lines of code in your program and tells the
Arduino where your command ends. The following example is how
you declare a variable with the proper use of semicolons:

int myNumber = 15;

The semicolon ends the command and we have created an Integer
variable with the name “myNumber” and this variable will have the
value 15. If you forget a semicolon in your code the Arduino IDE
will let you know so by giving you a compiling error when you try
to compile the code and the IDE will highlight the line of code
with the missing semicolon.

Commenting code

Sometimes it can be useful to put notes or write comments inside
your code for yourself or for someone else. If you write text inside
your program the Arduino will think its code and will try to ex-
ecute what is written. If what is written is something the Arduino
doesn’t understand it will give you an error. There are two ways
you can write messages in your code and hide it from the Arduino.
The first one is to use double slash // in front of any message. This
will hide the message from the Arduino but still leave it visible for
your eyes. The following is an example of a message hidden inside
a void loop():

79

void loop(){
 digitalWrite(ledPin,HIGH); // turns the led on
 delay(1000); // wait for some time
 digitalWrite(ledPin,LOW); // turns the led off
 delay(1000); // wait a bit more
}

If you want to hide messages longer then one line you have to use
/* and */. To mark the beginning of a message to be hidden you
use /* and to mark the end of the message you use the */. This will
hide the entire message. The following is a example of how to hide
a block of text inside a void loop():

void loop(){
/* this code will first turn a led on
then it will wait for some time
after that it will turn the led off
and then wait again. */

digitalWrite(ledPin,HIGH);
delay(1000);
digitalWrite(ledPin,LOW);
delay(1000);
}

Variables types and declarations

Giving a variable a value is also referred to as declaring a variable.
Declaring a variable means that you give a variable both a type,
name and a value.

int myNumber = 14;

In the example above the “int” is the type, the “myNumber” is the
name and 14 is the value. Note that you always have to give a vari-
able a value when you declare it. Say that I want to save a value from
a sensor in my program but I cant read the value from the sensor
when we declare at start of our program outside the void loop();.
Then you just give it a temporary value of 0 when you declare your
variable at the start of the code like the following example:

int mySensor = 0;

There are two possible ways of declaring a variable. If we declare
them at the start of our program before the void setup() they will
be what is called a global variable. A global variable can be accessed

Note:
// only works for messages and notes
no longer then one line.

80

by every part of your program. The opposite is called a local vari-
able and that is a variable that can only be used inside the function
where it is declared. The following example shows a variable named
ledPin that is global:

int ledPin = 13;
void setup(){
 digitalWrite(ledPin,OUTPUT);
}

void loop(){
 digitalWrite(ledPin,HIGH);
 delay(1000);
 digitalWrite(ledPin,LOW);
 delay(1000);
}

The variable ledPin in visible in the entire program and when it’s
used in the void loop(); it will be recognized as integer variable with
the value 13. If we however wrote the same program as follows:

void setup(){
 int ledPin = 13;
 digitalWrite(ledPin,OUTPUT);
}

void loop(){
 digitalWrite(ledPin,HIGH);
 delay(1000);
 digitalWrite(ledPin,LOW);
 delay(1000);
}

The program would give you an error, tell you it cant find the vari-
able ledPin that you are trying to use in the void loop(); since it is
declared, and therefore hidden inside, the void setup();.
In some programs it can be useful to use local variables but in most
cases it’s best to leave them as global variables and therefore declar-
ing them before the void setup();.

Once you have a variable with a value you can reassign a new
value to your variable but note that this will erase the preexisting
value contained in your variable. Lets say we have a variable called
myNumber and we have declared it as following:

int myNumber = 14;

81

If you later in your program want to give “myNumber” a new value
you do so as following;

myNumber = 56;

This will empty the number 14 from the variable “myNumber” and
replace it with the number 56. When we reassigned a new value to
our variable we did not add an “int” before this line of code, like we
did when we declared the variable. This is because you only have to
declare the type of your variable once in your program. It is pos-
sible to change the value of a variable but it is not possible to change
the type of your variable.

Types

So far we have been talking about “int” which is short for Integer
the most common type of variable when writing programs for the
Arduino. The common variables are:

• Int
Integers are used for storing data that is a number without any deci-
mals points and they store a 16-bit value with the range of 32767 to
– 32767. This means an Integer variable takes 16bits of the Arduinos
memory and we have the possibility to use any number between
32767 and – 32767.

int myNumber = 1234;

• Long
In most cases the length of an Integer will work but in some cases
we need to be able to store variables that are longer than the maxi-
mum size of an Integer and then we use long. A long is the ex-
tended data type for integers without decimal points and stores a
32bit value with the range of 2147483647 to – 2147483647. This
means a long variable takes 32bits of the Arduinos memory and we
have the possibility to use any number between 2147483647 and
– 2147483647.

long myBigNumber = 90000;

Note:
Using	longs	can	fill	up	the	memory	of	
the Arduino so only use them when
needed.

82

• Byte
To save memory space in the Arduino it can be useful to store
variables as bytes. A byte is a 8bit numerical value without decimal
point with the range of 0 to 255. This means a byte variable takes 8
bits of the Arduinos memory and we have the possibility to use any
number between 0 and 255.

BYTE mySmallNumber = 150;

• Float
The only data type that can save numbers with decimal points is
the float. A float has a greater resolution than Integers and they
are stored as a 32bit value with the range of 3.4028235E+38 to
– 3.4028235E+38. This means that you can save a number with
decimal point but only within the range of 3.4028235E+38 to –
3.4028235E+38. Declaring variables as float takes a lot of space in
the Arduino. Using float is also much slower than using Integers
since the Arduino needs more time to do calculations with float.

float mydecimalNumber = 2.33;

• Arrays
Sometimes it can be useful to store a collection of values and then
we need to use an array. All values stored in a array will be stored
with an index number and you collect a certain value by referring
to the index number. Arrays need to be declared in the same way as
we declare variables with a type, name and the collection of values.
The following example shows how to declare an integer array with
six different values:

int myArray[] = {1, 2, 3, 4, 5, 6};

Note that arrays start counting from 0. This means that the first
position in an array is 0. In the example above the number 1 is store
in the first position in the array and if we were to call for this value
we would have to do it as:

myNumber = myArray[0];

83

This would save the value of the first position of the array which
is 1, in our variable myNumber. In the opposite way we can store
values in the array by referring to a position in the array:

myArray[0] = 23;

This would save the number 23 on position 0 in the array.
If you know you will be using a lot of numbers and want to store
them in an array but you don’t know what values there are going
to be you can still declare an array with a certain amount of empty
places like the following:

int myArray[5];

This will create an array with 6 empty positions since an array start
counting from 0.

Doing math

As the Arduino is a small computer it can do mathematical opera-
tions. The Arduino can handle the most common arithmetic opera-
tors like addition, subtraction, multiplication and division.

myValue = 1 + 1;
/* this will store the number 2 in myValue: */

myValue = 4 - 2;
/* this will store the number 2 in myValue */

myValue = 3 * 4;
/* this will store the number 12 in myValue */

myValue = 6 / 2;
/* this will store the number 3 in myValue */

If you are using Integers for doing mathematical operation it can’t
handle decimal point as the float are the only type of variable that
can do this. In other words if we where to divide 10 by 6 it would
give us 1 as the result. Doing to large mathematical operations could
also result in a overflow of the memory since all types of variables
have a specific maximum size. Also be aware that calculating with
large numbers will slow the Arduino down.

84

You can also do what is called compound assignments which is
when you do mathematical operations to variables. The following
are examples of the different compound assignments you can do to
variables:

x++
/* this will increase x by one and it’s the same as
writing x = x + 1 */

x--
/* this will decrease x by one and it’s the same as
writing x = x- 1 */

x += y
/* this will increase x by y and it’s the same as
writing x = x + y */

x -= y
/* this will decrease x by y and it’s the same as
writing x = x - y */

x *= y
/* this will multiply x by y and it’s the same as
writing x = x * y */

x /= y
/* this will divide x by y and it’s the same as writ-
ing x = x / y */

• Map
Lets say you have a sensor that only gives a range of values from 50
to 200 and what you need is a range from 0 to 500. Then the map
function could come in handy. The map function re-maps a rang of
values to another range of values:

myVariable = map(mySensor,50,200,0,500);
//sensMin, sensMax, desiredMin, desiredMax

In the above example we are using the map function to store a
value in myVariable. The value comes from mySensor and the 50
and 200 marks the min and max value from our sensor. The 0 and
500 are the desired range we want in stead. The map function will
automatically re-map the values in the rang of 50 to 200 that we get
from mySensor to a value in the range of 0 to 500. Note that if you
want to use the map function you have to know the range of the
thing you want to re-map. To find out more on how to read values
have a look at on page ? In the ? section.

85

• Random(max)
The random command will return a random value in the range
from 0 to the max value you put inside the parenthesis. To be able
to use this value you have to save it in a variable:

myVariable = random(5);

This will save a random number in myVariable ranging from 0 to 4
or you can use the random command directly while making com-
parisons

if (3 = random(5);){
 doSomething;
}

The random command will only return a value between 0 and the
max value you put in the parenthesis, it will never return the actual
max number.

• Random(min,max)
If you want a random number that starts from a higher range than
0 to something else you will have to add your desired minimum
value:

myVariable = random(200,300); Note:
This example will only return a value
in	the	range	between	200	and	300.	It	
will	never	return	200	or	300.

86

Logical comparisons

If you want to make comparisons in your program you have to use
one of the possible comparison operators. We use them to compare
variables to either other variables or other constants to make state-
ments that can either be true or false.

• Equals equals ==
== is used to compare if something is equal to something else. A
statement using == will only be true if something is exactly the
same as something else:

x == y
/* x is exactly the same as y */

• Differ from !=
!= is used to compare if something is not equal to something else.
A statement using != will only be false if something is exactly the
same as something else:

x != y
/* x is different from y */

• Less than <
< is used to compare if something is less than something else. A
statement using < will only be true if something is smaller than
something else:

x < y
/* x is smaller than y */

• More than >
> is used to compare if something is larger than something else.
A statement using > will only be true if something is bigger than
something else:

x > y
/* x is bigger than y */

Note:
The “more than” and “less than” sym-
bols can easily be mixed up. Always
remember that the closed end points
towards the smaller value.

87

• Less or eqauls <=
<= is used to compare if something is less or equal to something
else. A statement using <= will only be true if something is smaller
or the same as something else:

x <= y
/* x is smaller or equal to y */

• More or equals >=
>= is used to compare if something is larger or equal to something
else. A statement using >= will only be true if something is bigger
or the same as something else:

x >= y
/* x is bigger or equal to y */

Logical Operators

The logical operators are used when you need two or more state-
ments in the same sentence and these can be true or false. There are
three different kind of logical operators that can be used.

• And &&
This is used to determine if two or more statements are true. If not
all statements are true then the sentence will be false. For something
to be true using two or more statements in the same sentence, all
statements need to be met but for something to be false only one of
the statements need to fail its requirements:

x < y && y > 5
/* x is smaller than y and y is bigger than 5 */

• Or ||
This is used to determine if something or something else is true. If
only one statement is true then the sentence will still be true:

x < y || y > 5
/* x is smaller than y or y is bigger than 5. Note:
both statements can be true */

88

• Not !
This is used to determine if something is not true. If the the state-
ment is not met then the sentence will always be true:

!x==5
/* x is not equal to 5 */

Constants

Constants are parts of the code language the Arduino uses that have
predefined values. They are used to make it easier to read the code
in your program.

• True and False
True and false are what is called boolean constants and they define if
something is, or is not, at a logical level. Any number can be used as
a boolean operator. 200 can be used as an operator and if a variable
has the value and we compare it to 200 this will generate a true:

boolean myBoolean = true;

It can also be written with a number:

int myNbrBoolean = 1;

In the first case we would need to compare myBoolean to another
boolean and in the second case we would need to compare myN-
brBoolean to another int.

• High and Low
HIGH and LOW are used to set the state of the digital pin which
only have these two states. HIGH means the same as ON or that we
are turning on 5 volt on our digital pin. It’s also the same as a logical
1. LOW means the same as OFF or that there is 0 volt on our digital
pin. It’s also the same as a logical 0:

digitalWrite(ledPin,HIGH);

This can also be written with numbers:

digitalWrite(ledPin,1);

Note:
All Arduinos constants are always
written with capital letters while
programming.

89

• Input and Output
INPUT and OUTPUT are used when we declare the mode of our
digital pin and there is only these two modes for the digital pins:

pinMode(12,OUTPUT);

If something happens and what to do

Let’s say you are working on a prototype and you are measuring
distance. Now when something comes with a certain range from
your object you want something to happen. This is when the if-
statement comes in handy.

• If
An if-statement is like a test the Arduino can do to determine if
something is true or false. An if-statement looks like the following
example:

if (myVariable>myOtherVariabel){
 doSomething;
}

In this example we ask the question if myVariable is bigger than
myOtherVariable and if it is so then the program will jump inside
the if-function and execute the code. If the statement is not true it
will skip this part of code. In the above example we are comparing
variables but we can compare constants as well:

if (buttonPin==HIGH){
 doSomething;
}

In this example we ask the question -if buttonPin is HIGH then
you doSomething and if it’s not skip what ever is inside the if-
function.

Note:
If is always spelled with small letters
while writing code. Don’t forget the
curly brackets to mark the start and
end of the if-function.

90

Keep in mind not to forget to use == when you are making com-
parisons. If you use a single = you will not compare something to
something else but you will declare the value of something else to
something:

if (buttonPin=HIGH){
 doSomething;
}

The above examples shows the wrong way of writing an if-state-
ment. This examples would declare buttonPin as HIGH and would
not check if buttonPin is HIGH.

• If else
Now lets say you make a check using an if-statement and your
condition is not true and you know what you want to do if the
first thing does not happen. Then you you can connect an else-
statement to your if statement:

if (myVariable>myOtherVariabel){
 doSomething;
} else {
 doAnotherThing;
}

The above example works like an “either-or” statements. Either
myVariable is bigger than myOtherVariable and you doSomething
or myVariable isn’t bigger than myOtherVariable and you doThis.
Don’t forget to use new curly bracket to mark where the else part
starts and ends.

You can add as many else conditions to an if-statement as you want
but if you add more than one else you have to write all except the
last one as else if followed by a new condition:

if (myVariable>myOtherVariabel){
 doSomthing;
} else if (myVariable<100){
 doAnotherThing;
} else {
 doTheLastThing;
}

If myVariable in the above example isn’t bigger then myOtherVari-
able then ask if myVariable is smaller than 100 and if this isn’t true
either doTheLastThing.

91

For

For-loops are used when you want to repeat a part of code a certain
amount of time. The for-loop always has three parts in the paren-
thesis and it is the initialization of the counter, the condition to end
the for loop and the increasing of your counter:

for (int i=0; i<200; i++) {
 doSomething;
}

In this example int i=0; is the initialization of the counter for the
for loop. Here we say that we want a counter with the name i and
we want it to start counting from 0. When we are done with the
first part of the loop we end it with a semicolon and this goes for
the second part as well. The second part is i<200 which is our
condition for ending the for loop and in our case this means when
i becomes bigger than 200 we want to stop looping. The last part
is our increasing of the counter for every time the loop starts. i++
will increase the counter by one every time the loop restarts. The
first time the counter i will be 0 the next time it will be 1 and so
on. When i hits 199 the condition for ending the for loop will be
met and the program will exit the loop to carry on with the code
written after the curly bracket that marks the end of the loop.

While

A while loop will keep on looping until the condition inside its
parenthesis becomes false. If a while loop is used there has to be
something within the while loop that can make some increasing or
change or the while loop will never end:

while (myVariable>100) {
 doSomething;
}

This example tests if myVariable is smaller than 100. If it is then it
will start looping. But there is nothing inside the loop that changes
myVariable since the first time we checked so this loop would con-
tinue to doSomething forever.

92

In the following example we have added a reading from a sensor:

while (myVariable>100) {
 doSomething;
 myVariable = readSensor;
}

Now every time it makes a loop it will first doSomething and then
save the value from readSensor in myVariable. If the value save in
myVariable is above 100 the while loop will stop and carry on with
the code written after the curly bracket that marks the end of the
loop. Note that if you are using sensors to break a while loop make
sure the sensor will give you a value that is above the threshold of
your condition in the while loop.

The Digital Pins

These pins are the 0 to 13 pins on your Arduino and they are called
digital because they can only handle information in 0 or 1. If you
want to use a digital pin for something the first thing you have to
do is to set the mode of the pin. This is always done in the void
setup().

The command for setting the mode of a pin is pinMode() and is
used as follows:

pinMode(pin,OUTPUT);

“pin” in this example is a variable with the value that corresponds
to the number next to the physical pin on your Arduino board.
OUTPUT is the the desired mode of your pin. The digital pins has
only two modes, OUTPUT and INPUT. If you declare a pin as an
OUTPUT you can only use it to either turn 5V on the pin or turn
off to 0V. If you declare your pin as an INPUT you can only use it
to read if there is 5V coming in to the pin or if it 0V on the pin:

digitalWrite(pin,value)

To turn your digital pin on and off you need to use the digitalWrite()
command. In the parenthesis you always need to state what pin you
want to use and what value you want to give it:

Note:
If you are using a pin as an INPUT make
sure the signal is never more then 5v or
you will burn your Arduino board.

93

digitalWrite(pin,HIGH);

This will turn the pin to HIGH which will enable it to send 5V. If
you write LOW instead of HIGH we will turn the pin back to 0V.
Note that until you turn your digital pin to HIGH the default value
is LOW after setting the mode of the pin. If you have a look at your
Arduino board you’ll also see that digital pin 0 and 1 are marked as
RX and TX. These two port are reserved for serial communication
and should not be used since it will put the Arduino in standby
mode until a signal is received.

•DigitalRead(pin)
The digitalRead() command reads the status of a pin and returns
either a HIGH if there is 5V coming into the pin or LOW if there
is 0V on the pin:

digitalRead(pin);

To be able to use this status for something you will need to save it
in a variable:

myVariable = digitalRead(pin);

If you want to make a comparison you can write the command
directly in a statement:

if (digitalRead(pin)==LOW){
 doSomething;
}

Analog pins

The analog pins work differently from the digital. We mentioned
that the digital pins only handles information in 1 or 0 which is the
same as HIGH and LOW or 0V and 5V. However, in the real world
we don’t measure everything in zeros and ones so the Arduino has
six special pins called analog pins that makes a mathematical calcu-
lation on the voltage from a range of 0 to 1023. Analog pins don’t
have to be mode declared since they’re only used as inputs.

Note:
If you are making comparisons with
analog readings the value from a analog
pin	can	never	be	above	1023.	

94

• Analog read (pin)
To read the value on an analog pin you have to use the analogRead()
command and refer to what pin you want to read:

analogRead(pin);

As with the digital pin you have to save this value in a variable to
be able to use it

myVariable = analogRead(pin);

You can use the command directly to make comparisons

if (analogRead(pin)>500){
 doSomething;
}

• Analog write (pin,value)
The digital pins can only be HIGH and LOW which means the
same as either there is 5V on the digital pins or 0V. But digital pin 3,
5, 6, 9, 10, and 11 has a special function called analogWrite(). With
this function is possible to send a pseudo-analog value to these spe-
cial digital pins. This is also called pulse with modulation (PWM):

analogWrite(pin,value);

The value in this example can be anything from 0 to 255. If you
where to write 0 this would mean the same as setting the pin to
LOW and 255 is the same as HIGH. But with the analogWrite()
you get 255 steps in between HIGH and LOW so for example:

analogWrite(pin,127);

This would be the same as sending out 2.5V on your digital pin.
Compared to the digitalWrite() which shift from 0V to 5V in an
instance, with the analogWrite() you can make a slower transition
from 0V to 5V. Note that the analogWrite() only works on the
digital pins marked PWM (3, 5, 6, 9, 10, and 11) and not on the
analog pins.

95

Using time

The Arduino is a small but powerful computer and can make
1000000 calculations per second. Wen you are making prototypes
you may not want to execute at this lightning speed. Then you’re
going to have to tell the Arduino to slow down every now and
then.

• Delay
The delay command is used to make a pause in your program. This
command counts in milliseconds and you put your desired pause
time inside the parenthesis like the following example:

delay(1000);

This delay will make a pause in your program with one second.

• Count milliseconds
This command will return how many milliseconds that has passed
since the Arduino started the current running program. To be able
to use this value you have to save it in a variable:

myVariable = millis();

You can use it directly to make time comparisons:

if (myAlarmTime == millis();){
 ringAlarm;
}

Communication with other devices

To be able to communicate with other electronic devices you will
have to enable the communication ports on your Arduino. The Ar-
duino can both communicate with your computer or with other
electronic devices that use the serial communication protocol.
The digital pin 0 and 1 on the Arduino is reserved for serial com-
munication with other devices and you should avoid using these
two port for anything else since this can interfere with the Arduino
trying to run you program.

Note:
The	value	of	millis()	will	reset	itself	to	0	
after about 9 hours.

96

• Serial begin
To enable the Arduino for communication you use the command
Serial.begin(). This command is always used in the void setup() and
nowhere else. Inside the parenthesis you have to put your desired
communication in bits per second which is also known as baud and
the available speeds are 300, 1200, 2400, 4800, 9600, 14400, 19200,
28800, 38400, 57600, or 115200:

void setup() {
 Serial.begin(9600);
}

This will open the serial port and set the communication rate to
9600 baud.

• Serial println
This command will print whatever you put inside the parenthesis.
To print integers you just have to type them inside the parenthesis:

Serial.println(12345);

However printing characters and string of character needs to be
quoted. If you want to send a single character you use single quota-
tion marks ‘ ‘:

Serial.println(‘C’);

The above code line will send the character C over the serial port.
If you want to print a string of characters like a message you have
to use normal quotation marks “ “:

Serial.println(“Hello from Arduino”);

• Serial println
The Serial.print() works the same as the Serial.prinln with the ex-
ception that Serial.println() is followed by a automatic carriage re-
turn and a line feed. If something is sent over the serial port with
Serial.println(1) the message would be show like the following in
your monitor:

1
1
1
1
1

97

The line feed added by the Serial.println() is the same as pushing
enter after every time you send something so it ends up on a new
line. If we would send Serial.print(1) over the serial port it would
be received like the following:

1111111111111111111111111111111111111

Note that if you are communicating with other electronic devices
make sure that you print your data in the right formation. Some-
times the carriage return and line feed added by Serial.println()
can interfere with the communication. Information about the right
communication protocol for individual electronic devices can be
found in the data sheet for that device.

• Special case printing
Sometimes you will need to send information in different formats
and then you have to add this format to your print:

Serial.println(message,format):

The available formats are decimals, hexadecimal, octal, binary and
bytes and are used as the following examples show:

Serial.print(b,DEC);
/* This will print 79 as a ASCII-encoded decimal which
is “79” */

Serial.print(b,HEX);
/* This will print 79 as a ASCII-encoded hexadecimal
which is “4F” */

Serial.print(b,OCT);
/* This will print 79 as a ASCII-encoded octal which
is “117” */

Serial.print(b,BIN);
/* This will print 79 as a ASCII-encoded binary code
which is “1001111” */

Serial.print(b,BYTE);
/* This will print 79 as a ASCII-encoded bytes which
is “O” */

The ASCII (American Standard Code for Information Inter-
change) encoding is a standard way of encoding text numerically.
Even if you write numbers in your code it’s not actually numbers
you are writing, it’s the text representation of numbers as same as
“one” is the word representation of 1.

Note:
A small b, which is used in these
examples has the ASCII-code “79”.

99

Epilogue

We have now reached the end of this book and hopefully the be-
ginning of your own future fashionable and wearable prototypes.
We hope that this book has given you a basic insight into the world
of wearable computing and that the examples in the book will work
as a foundation for your own progress within the field.

However a straight transition from this book to prototyping on
your own might be hard. But fortunately you are not alone in the
world of electronic prototyping. As we said at the beginning of this
book the Arduino is not only hardware and software. It is also a
huge community of people, both professionals and hobbyists with a
interest in physical prototyping.

A large portion of these people come together at the Arduino play-
ground (www.arduino.cc/playground) where they both help each
other out with all kinds of problems or just to share ideas and show
off new constructions.

Instructables (www.instructables.com) is another great online com-
munity for DIY (do it yourself) people. The users not only create
there own elecrtronic DIY guides but also “how to do” on almost
any subject you can think of. Instructables is one of the best and
biggest sources of inspiration and we can sincerely recommend it to
any one interested in fashionable and wearable computing.

Another good contender to Instructables is the Make blog and
community (www.makezine.com) which also has a large group of
skilled people tied to it and is a great recourse to keep you updated
on what is happening in the field of prototyping.

If you are looking for communities strictly devoted to the field of
fashion and technology then the Fashioning tech blog (www.fash-
ioningtech.com) is a nice place to start. They also have a growing
community of users with a forum where they share ideas and help
each other out.

100

Even if a book might be a good start and introduction, it will never
beat the internet in its extensive and up to date information. But it’s
our hope that this book will give you the knowledge needed to be
able to make use of all the information you can find online.

There’s more good online resources and to include them in this
book would probably require a few extra chapter. The list above are
all good starting points for your own online information library.

The most important thing you should keep in mind while working
with electronic prototyping is to have fun and don’t be scared to
try things out. But still beware that you are working with electric-
ity so a simple principle like, if you are not sure about something
make proper research until you are confident before plugging stuff
together, it might save you money.

Be safe, not stupid and happy prototyping.

101

Acknowledgments

This book has been inspired by Brian Evans booklet
Arduino programming notebook, First ed, 2007
and
Getting Started with Arduino, Thired ed, 2008by Massimo Banzi
Thanks also goes to
the physical prototyping laboratory at Malmö University, Faculty of
Art, Culture and communication (k3)
the guys at the critical design studio 1scale1, Malmö
and special thanks to the Arduino team for there work with the
Arduino, Tom Igo, Dave Mellis, David Cuartielles, Massimo Banzi
and Gianluca Martino

103

Index

